Multi Layer Ceramic Capacito

Multi Layer Ceramic Capacitors

Introduction

SAMWHA's series of multilayer ceramic(MLC) chip capacitors is designed to meet a wide variety of need. Multilayer ceramic chip capacitors are available in both class I and class II formulations. Temperature compensation formulations are class I and temperature stable and general application formulations are classified at class II. The class I multilayer ceramic capacitors are COG with negligible dependence of electrical properties on temperature, voltage, frequency. The most of commonly used class II dielectric are X7R, X5R and Y5V. The X7R provides intermediate capacitance values which vary $\pm 15\%$ over the temperature range of -55°C to 125°C. The X5R provides intermediate capacitance values which vary $\pm 15\%$ over the temperature range of -55°C to 85°C. The Y5V provides the highest capacitance value which vary from 22% to -82% over the temperature range of -30°C to 85°C. All class II capacitors vary in capacitance value under the influence of temperature, operating voltage and frequency. We offer a complete line of products for both class I and II.

Features

- Samwha's high density ceramic bodies offer superior performance and reliability
- Samwha offer various temperature characteristics, rated voltage and packing method
- Material with high dielectric constant and superior manufacturing technology allows very high values in a small size
- Solder coated terminals offer superior solderability

Applications

Wide applications throughout commercial and industrial market.

- Communication products like Cellular Phone, Pager, Codeless phone
- Multimedia products like DVD, CD-ROM, FDD, HDD, Game machine, Computer, Note book, Digital camera, LCD
- Audio visual products like TV, Camcorder, Minidisk, MP3 Player
- Communication products like Electronic tuner, Duplexer, VCXO, TCXO, Modem
- OA equipment products like Printer, Copy Machine, Fax Machine
- * special specification like a Automobile, Medical, Military, Aviation should be discuss with our sales representatives

SMD Type

Shape & Dimensions

(Unit : mm)

			Dimensions										
Code(inch)	Le	ngth	Wi	T1(min)									
	L	Tol(±)	W	Tol(±)	()								
0603(0201)	0.60	0.03	0.30	0.03	0.05								
1005(0402)	1.00	0.05	0.50	0.05	0.05								
1608(0603)	1.60	0.15	0.80	0.10	0.10								
2012(0805)	2.00	0.20	1.25	0.15	0.10								
3216(1206)	3.20	0.30	1.60	0.20	0.15								
3225(1210)	3.20	0.40	2.50	0.25	0.15								
4520(1808)	4.50	0.40	2.00	0.25	0.20								
4532(1812)	4.50	0.40	3.20	0.30	0.20								
5750(2220)	5.70	0.50	5.00	0.40	0.30								

*1608 Size $\geq 10 \mu F \Rightarrow W : 0.8 \pm 0.15, T : 0.8 \pm 0.15$

How to Order(Product Identification)

1 Туре

CS:SMD

SA: ARRAY

2 Size Code

This is expressed in tens of a millimeter.

The first two digits are the length, the last two digits are width.

Size(mm)	0603	1005	1608	2012	3216	3225	4520	4532	5750
----------	------	------	------	------	------	------	------	------	------

3 Temperature Coefficient Code

Temperature Characteristice	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range
COG	–55 to 125℃	0±30ppm/°C	–55 to 125℃
X7R	–55 to 125℃	±15%	−55 to 125°C
X5R	–55 to 85℃	±15%	–55 to 85℃
Y5V	−30 to 85°C	+22, -82%	−30 to 85°C

4 Capacitance Code(Pico Farads)

The nominal capacitance value in pF is expressed by three digit numbers. The first two digits represents significant figures and the last digit denotes the number of zero Ex.) 104 = 100000pF R denotes decimal 8R2 = 8.2pF

5 Capacitance Tolerance Code

Code	Tolerance	Code	Tolerance
В	±0.1pF	М	$\pm 20\%$
С	\pm 0.25pF	Р	+100, -0%
D	\pm 0.5pF	Z	+80, -20%
F	±1.0%	Н	+0.25/-0pF
G	$\pm 2.0\%$	I	+0/-0.25pF
J	\pm 5%	U	+5/-0%
К	±10%	V	+0/-5%

6 Voltage Code

Code	6R3	100	160	250	500	101	201	251	631	302
Vol.	DC 6.3V	DC 10V	DC 16V	DC 25V	DC 50V	DC 100V	DC 200V	DC 250V	DC 630V	DC 3000V

7 Termination Code

Ex.) N : Ni-Sn(Nickel-Tin Plate)

8 Packing Code

Ex.) R : Reel Type B : Bulk Type

9 Thickness Option

Thickn	ess(mm)	Cada	Thickne	ess(mm)	Cada
t	Tol(±)	Coue	t	Tol(±)	Code
0.30	0.03	Blank	1.30	0.20	E
0.50	0.05	Blank	1.35	0.20	н
0.60	0.10	А	1.60	0.20	I
0.80	0.10	В	1.80	0.20	J
0.85	0.15	В	2.00	0.25	К
1.00	0.15	E	2.50	0.25	L
1.10	0.15	Е	2.80	0.30	м
1.15	0.15	Е	3.20	0.30	N
1.25	0.15	Е	5.00	0.40	0

Typical Performance Characteristics COG

Application

Suited for precision circuits, requiring stable dielectric characteristics, negligible dependence of capacitance and dissipation factor on time, voltage and frequency.

Dielectric Characteristics

Temperature Characteristic	0±30ppm/°C	Typical Temperature Coefficient
Operating Temperature	–55~125℃	(%) 0.3 (%) 0.2 (%) 0.2
Capacitance Tolerance	>10pF : \pm 5%, \pm 10%,(\pm 1%, \pm 2%, \pm 20%) \leq 10pF : \pm 0.1pF, \pm 0.25pF, \pm 0.5pF	and the second sec
Dissipation Factor & Q	\geq 30pF : DF \leq 0.1%, Q \geq 1000 < 30pF : Q \geq 400+20 \times C	
Insulation Resistance	More than 10,000MΩ or 500ΩF (Whichever is smaller)	30 -25 0 25 50 75 100 125 Temperature (℃)
Dielectric Strength	>3×RVDC	-
Test Voltage	0.5 to 5Vrms(\leq 1000pF), 1 \pm 0.2Vrms(>1000pF)	-
Test Frequency	1±0.1MHz(≤1000pF), 1±0.1kHz(>1000pF)	

X7R

Application

Stable class || dielectric properties, suited for by-pass and coupling purposes, filtering, frequency discrimination, DC blockage, and as voltage transient suppression elements.

Dielectric Characteristics

		Typical Temperature Coefficient
Temperature Characteristic	±15%	
Operating Temperature	–55~125℃	%) 10
Capacitance Tolerance	±10%, ±20%,(±5%, +80~-20%)	C C La
Dissipation Factor & Q	50V Min. : 2.5% Max. 25V Min. : 3.0% Max.	
	16V Min. : 3.5% Max. 10V Min. : 5.0% Max.	
	6.3V Min. : 5.0% Max.(<3.3μF), 10% Max.(≥3.3μF)	
	Thin layer lange capacitors type 10% Max.	-30 -25 0 25 30 75 100 125 Temperature (℃)
Insulation Resistance	More than 10,000MΩ or 500ΩF(Whichever is smaller)	
	Thin layer lange capacitors type 50 \ensuremath{QF} Min.	
Dielectric Strength	>2.5×RVDC	
Test Voltage	1±0.2Vrms(≤10µF, 10V Min.)	
	0.5 ± 0.1 Vrms($\leq 10 \mu$ F, 6.3 V Max.)	
	0.5±0.1Vrms(>10µF)	
Test Frequency	1±0.1kHz(≤10µF, 10V Min.)	
	1±0.1kHz(≤10µF, 6.3V Max.)	
	120 ± 24 Hz(> 10μ F)	

X5R

Application

Stable class || dielectric properties, suited for by-pass and coupling purposes, filtering, frequency discrimination, DC blockage, and as voltage transient suppression elements.

Tunical Tomporatura Coofficiant

Dielectric Characteristics

Temperature Characteristic	±15%	
Operating Temperature	−55~85°C	(%) a6
Capacitance Tolerance	±10%, ±20%,(±5%, +80~-20%)	C C C C C C C C C C C C C C C C C C C
Dissipation Factor & Q	50V Min. : 2.5% Max. 25V Min. : 3.0% Max. 16V Min. : 3.5% Max. 10V Min. : 5.0% Max. 6.3V Min. : 5.0% Max.($<3.3\mu$ F), 10% Max.($\geq3.3\mu$ F) Thin layer lange capacitors type 10% Max.	-10 -15 -15 -15 -15 -15 -15 -15 -15
Insulation Resistance	More than 10,000 MQ or $500 \mathrm{QF}$ (Whichever is smaller) Thin layer lange capacitors type $50 \mathrm{QF}$ Min.	
Dielectric Strength	>2.5×RVDC	
Test Voltage	1 ± 0.2 Vrms(\leq 10 μ F, 10V Min.) 0.5 \pm 0.1Vrms(\leq 10 μ F, 6.3V Max.) 0.5 \pm 0.1Vrms(>10 μ F)	
Test Frequency	1 ± 0.1 kHz(\leq 10µF, 10V Min.) 1±0.1kHz(\leq 10µF, 6.3V Max.), 120±24Hz(>10µF)	

Y5V

Application

The Hi-K(Y5V) dielectrics deliver high capacitance density and are ideally suited for applications where space is at a premium, or as replacement for tantalum capacitors. Typically applications include use as by-pass or decoupling elements. Best performance is obtained at or near room temperature, with low DC bias.

Dielectric Characteristics

		Typical Temperature Coefficient
Temperature Characteristic	+22%~-82%	
Operating Temperature	−30~85℃	ego
Capacitance Tolerance	-20~+80%(±20%)	e e e e e e e e e e e e e e e e e e e
Dissipation Factor & Q	50V Min. : 5% Max. 25V Min. : 7% Max. 16V Min. : 9% Max. 10V Min. : 12.5% Max. 6.3V Min. : 15% Max. Thin layer lange capacitors type 20% Max.	- Jun
Insulation Resistance	More than 10,000 MQ or $500 \mathrm{QF}$ (Whichever is smaller) Thin layer lange capacitors type $50 \mathrm{QF}$ Min.	
Dielectric Strength	>2.5×RVDC	-
Test Voltage	1 ± 0.2 Vrms($\leq 10_{\mu}$ F, 10V Min.) 0.5 ± 0.1 Vrms($\leq 10_{\mu}$ F, 6.3V Max.) 0.5 ± 0.1 Vrms(>10_{\mu}F)	
Test Frequency	1±0.1kHz(\leq 10 μ F, 10V Min.) 1±0.1kHz(\leq 10 μ F, 6.3V Max.), 120±24Hz(>10 μ F)	

Appendix |

Size(inch) 0003(0021) 1003(0022) 1003(0023) 2012(0265) 211(1205) $C_{p,1}$ 25 25 50 25 55 55 55 55 55 55 55	Туре					COG				
VaritV Cap. 25 20 25 50 25 26 27	Size(inch)	0603(0201)	1005(0402)	1608(0603)	2012(0	805)	3216	6(1206)
Log. Image: Constraint of the second s	Volt(V)	25	25	50	25	50	25	50	25	50
0.5=(05) 1=(00) 2=(02) 3=(03) 4=(04) 4=(0	Cap.									
14700 1	0.5pF(0R5)									
24/020 1 <td>1pF(010)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1pF(010)									
3#(100)	2pF(020)									
4#(P40)	3pF(030)									
SF(C69)	4pF(040)									
6 47 (040) 8 47 (040)	5pF(050)									
7.4f(170)	6pF(060)									
8#f(080)	7 pF(070)									
99(109) 1 1 1 1 1 124(120) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 136(180) 1 1 1 1 1 1306(180) 1 1 1 1 1 12016(120) 0 0 0 0 1 12016(180)<	8pF(080)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9pF(090)									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10p⊢(100)									
1bg: (150) 1 <td< td=""><td>12pF(120)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	12pF(120)									
189:(190) 1	15pF(150)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18p⊢(180)									
2/6 (2/0) 33/7 (330) 1	22pF(220)									
339(1539)	27 pF(270)									
399(290) 1<	<u> </u>									
4/p(4/0) 1<	<u> </u>									
Sop(50)	4/p⊢(4/U)									
obje (60) Image: Constraint of the second	56pF(56U)									
02/(24) 0 </td <td>680)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	680)									
1000;100) 03 0 03 0 0 0 150;f(15)) 0 0 0 0 0 0 180;f(18) 0 0 0 0 0 0 220;f(22) 0 0 0 0 0 0 350;f(51) 0 0 0 0 0 0 500;f(51) 0 0 0 0 0 0 1000;f(12) 05 05 0 0 0 1200;f(22) 05 0 0 0 0 1200;f(22) 05 0 0 0 0 1200;f(22) 0 0 0 0 0 1000;f(62) 0 0 0 <	82p⊢(820)	•								
1200+(12) 1	100p⊢(101)	0.3								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120pF(121)									
$100 \mu(60)$ Image: Constraint of the	150pF(151)									
2206-[221]	180pF(181)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	220pF(221)									
330pr(32)	Z/Up⊢(Z/I)									
370(r) (37) 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
470pr (47) 1										
380pr (86) 1	4/0pr(4/1)									
B20pr (687) 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Output	820₀⊑(821)									
1200pf (122) 0.5 0.5 0.5 1.15 1.15 1.15 1500pf (122) 0.6 0.6 0.6 0.6 0.6 0.6 2200pf (222) 0.8 0.8 0.6 0.6 0.6 0.6 3300pf (32) 0.8 0.8 0.6 0.6 0.6 0.6 3300pf (32) 0.8 0.8 0.8 0.6 0.6 0.6 0.6 3500pf (52) 0.8<	020p⊢(021) 1000₀⊏(102)									
1500/r (122) 115 115 115 115 1800/r (182) 0.6 0.6 0.6 0.6 0.6 2200/r (222) 0.8 0.8 0.8 0.8 0.6 0.6 3300/r (332) 0.8	1200 pF (102)		0.5	0.5						
1800pr (192) 115 115 1800pr (182) 0.6 0.6 0.6 2200pr (222) 0.8 0.8 0.6 0.6 3300pr (322) 0.8 0.8 0.8 0.6 0.6 3300pr (322) 0.8 0.8 0.8 0.6 0.6 0.6 3900pr (322) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 4700pr (472) 0.8	1500pr (122)								1 15	115
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1800 pF (182)								1.15	1.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2200 nE(222)						▼∕			
3300pF(332) 0.8	2700 pF (272)				N.	N	0.0	0.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3300 pF(332)				0.0	0.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3900pF(392)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4700pF(472)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5600pF(562)									
8200pF(822) Image: state of the state	6800pF(682)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8200pF(822)									
12000pF(123) Image: constraint of the second se	10000pF(103)						1.25	1.25		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12000pF(123)						1.20	1,20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15000pF(153)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18000pF(183)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22000pF(223)									
33000pF(333) Image: Constraint of the second s	27000pF(273)									
47000pF(473) Image: Constraint of the second se	33000pF(333)									
56000 pF (563) Image: Constraint of the second	47000pF(473)									
68000 pF (683) 82000 pF (823) 0.1μF (104)	56000pF(563)								1.60	1,60
82000 pF (823)	68000pF(683)									
0.1µF(104)	82000pF(823)									
	0.1 _µ F (104)									

COG-Temperature Compensating Type(0603~3216)

Temperature Compensating Type : Dissipation Factor Page 22 (No.5)

Appendix ||

X7R-High Dielectric Constant Type(0603~3225) & Thin Layer Large-Capacitance Type

Туре	X7R																																					
Size(inch)	0	60	3(020	1)		1005(0402) 1608(0603) 2012(0805) 3216(1								(12	206))		3	22	5(1	210))															
Volt(V) Cap.	6.3	8 1	0	16	25	6.3	6 1(0 1	5 2	25	50	6.:	3 1	0	16	25	5 5	50	6.3	3 1	0	16	25	5	0	6.3	1(D 1	16	25	50	6.;	3 1	10	16	25	5 5	0
100pF(101)																																						
470pF(471)																																						
1000pF(102)					•																																	
2200pF(222)					0.5																																	
4700pF(472)																																						
10000pF(103)	•	1	7	•																																		
15000pF(153)	0.0	0.		0.0																																		
22000pF(223)											•																											
33000pF(333)											0.0								•	0	6	0.6	•	0	6													
47000pF(473)																																						
68000pF(683)																																						
0.1µF (104)								0.	5 0	▼ 0.5							, C	▼ 0.8	V	5 0.8	7 85	•	▼ 0.85	5 0.	▼ 85	V 0.85	0.8	, 15 0	▼ .85	• 0.85	0.85							
0.15µF(154)																																						
0.22µF (224)						•		Ś																														
0.33µF (334)						0.0																																
0.47µF (474)																▼										▼ 1.15	▼ 1.1	5	▼ 1.15	▼ 1.15	▼ 1.15							
0.68µF (684)																0.0																						
1.0µF(105)															•									1.	2 5							▼ 2.0		▼ 2.0	▼ 2.0	▼ 2.0	2	▼ 2.0
1.5µF (155)																																						
2.2µF (225)												▼	, 3 0	.8																	▼ 1.6						2	.5
4.7µF (475)																						▼ 1.25	▼ 1.25	5														
6.8µ F(685)																																						
10µF (106)																			1.25	5 12	7 25					▼ 1.6	1.6	5	▼ 1.6	▼ 1.6						¥ 2.5		
22µF (226)																																2.5	5 2	▼ 2.5	▼ 2.5			
47µF(476)																																						
100µF(107)																																						

General Type : Dissipation Factor Page 22(No.5)

* General Type : Dissipation Factor Page 22(No.5)

Thin Layer Large-Capacitance Type : Dissipation Factor Page 22(No.5)

X5R-High Dielectric Constant Type(0603~3225) & Thin Layer Large-Capacitance Type

General Type : Dissipation Factor Page 22(No.5)

* General Type : Dissipation Factor Page 22(No.5)

Thin Layer Large-Capacitance Type : Dissipation Factor Page 22(No.5)

Y5V Туре Size(inch) 1005(0402) 1608(0603) 2012(0805) 3216(1206) 3225(1210) Volt(V) 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 Cap. 1000pF(102) 2200pF(222) 4700pF(472) 10000pF(103) 15000pF(153) 22000pF(223) ▼ 0.5 33000pF(333) 47000pF(473) 68000pF(683) 0.1µF(104) **▼** 0.5 0.15µF(154) 0.22µF(224) **♥** 0.8 0.33µF(334) 0.47µF(474) **♦** 0.5 **▼** 0.8 0.68µF(684) 1.0µF(105) **↓** 1.15 **♦** 1.15 **♦** 1.25 1.5µF(155) 2.2µF(225) 1.15 1.15 1.15 n**`**0 3.3µF(335) **▼** 1.8 ▼ 1.8 **▼** 1.8 **▼** 1.8 **V** 4.7μF(475) **↓** 1,8 **♦** 0.8 1.25 1 25 6.8µF(685) 2.0 10µF**(**106) ▼ 2.0 ▼ 2.0 **▼** 2.0 ***** 1 25 2.0 22µF(226) **★** 2.5 47μF(476) 100µF(107) X

Y5V-High Dielectric Constant Type(0603~3225) & Thin Layer Large-Capacitance Type

General Type : Dissipation Factor Page 22(No.5)

* General Type : Dissipation Factor Page 22(No.5)

Thin Layer Large-Capacitance Type : Dissipation Factor Page 22(No.5)

SMD Type-High Voltage

Product Offering

SAMWHA high voltage MLCC products with the temperature characteristics of C0G and X7R are designed for commercial and industrial applications. The products are applied to DC-DC converters and ballast circuit to reduce ripple noise and diverting potentially unsafe transients in various sizes with working voltage up to DC 7kV. These high voltage capacitors feature a special internal electrode design which has capacitor network to reduce voltage concentrations by distributing voltage throughout the entire capacitor.

Features

- High reliability
- The highest voltage rating by the special internal electrode design
- Wide voltage level : from $100V_{\text{DC}}$ to $7{,}000V_{\text{DC}}$
- Surface mount suited for wave and reflow soldering
- RoHS compliant

Applications

- DC-DC Converters
- Network Equipments
- Back-Lighting Inverter
- Lighting Ballast
- Modem & Power Supply
- LAN/WLAN Interface
- * special specification like a Automobile, Medical, Military, Aviation should be discuss with our sales representatives

Special Options for the Safety

- Inset electrode margins to prevent short mode failure resulted from the crack by mechanical bending stress
- Soft termination is optionally available to reduce possibility for the crack of MLCCs by mechanical bending stress

How to Order(Product Identification)

CS 4520 COG 150 J 302 N R E

4

5

6

3216

8

4520

7

3225

9

4532

5750

7566

9595

Type CS:SMD

1

2 Size Code

۱D

2

ze(mm) 1608 2012

Size(mm)

3

B Dielectric(Temp. Coefficient)

COG, X7R

4 Capacitance

1st two digits are value, 3rd digit denotes number of zeros; 331 = 330pF, 104 = 100000pF, 8R2 = 8.2pF

5 Tolerance

Code	Tolerance	Code	Tolerance
В	±0.1pF	С	±0.25pF
D	±0.50pF	F	±1%
G	±2%	J	$\pm 5\%$
К	±10%	М	±20%
Z	+80~-20%		

6 Rated Voltage Code

1st two digits are value, 3rd digit denotes number of zeros; 302 = 3,000V, 502 = 5,000V, 722 = 7,200V

7 Plating

8 Packing

Ni / Sn Plated

```
B: Bulk Pack R: Reel Pack C: Case Box
```

9 Thickness Option

Thickn	ess(mm)	Ceda	Thickne	ess(mm)	Cada
t	Tol(±)	Code	t	Tol(±)	Code
0.60	0.10	А	1.35	0.20	Н
0.80	0.10	В	1.60	0.20	I
0.85	0.15	В	1.80	0.20	J
1.00	0.15	E	2.00	0.25	К
1.10	0.15	E	2.50	0.25	L
1.15	0.15	E	2.80	0.30	М
1.25	0.15	E	3.20	0.5	N
1.30	0.20	E	5.00	0.5	0

Shape & Dimensions

(Unit : mm)

	Dimensions											
Code	Le	ngth	Wi	dth	T1(min)							
	L	Tol(±)	W	Tol(±)	()							
1608(0603)	1.60	0.15	0.80	0.10	0.10							
2012(0805)	2.00	0.20	1.25	0.15	0.10							
3216(1206)	3.20	0.30	1.60	0.20	0.15							
3225(1210)	3.20	0.40	2.50	0.25	0.15							
4520(1808)	4.50	0.40	2.00	0.25	0.20							
4532(1812)	4.50	0.40	3.20	0.30	0.20							
5750(2220)	5.70	0.50	5.00	0.40	0.30							
7566(3026)	7.50	0.50	6.60	0.50	0.30							
9595(3838)	9.50	0.50	9.50	0.50	0.30							

*1608 Size $\geq 10 \mu F \Rightarrow W : 0.8 \pm 0.15, T : 0.8 \pm 0.15$

Typical Performance Characteristics

Dielectric Characteristics

COG(NPO)

X7R

Dielectric Classification	Ultra Stable	Stable
Rated temperature range	−55°C to +125°C	–55℃ to +125℃
TCC(Temperature Characteristics Coefficient)	0±30ppm	±15%
Dissifation Factor(tan δ)	C≥30pF: Q≥1,000 (DF:≤ 0.1%)	2.5% Max.
	$C < 30 \text{pF} : Q \ge 400 + 20C(\text{DF} : \le 1/(400 + 20C))$	
IR(Insulation Resistance)	500V Below : Rated voltage 60sec 500V Above : 500V 60sec More than 10,000 №	500V Below:Rated voltage 60sec 500V Above:500V 60sec -DC100V~1KV : $C \ge 0.01 \mu$ F:More than $100 M_{\Omega} \mu$ F : $C < 0.01 \mu$ F:More than $10,000 M_{\Omega}$ -DC2~3KV:More than 6,000 M_{\Omega}
Capacitance Tolerance	⟨10pF:±0.25pF,±0.5pF	±10%, ±20%
	≥10pF : ±5%, ±0%	
Dielectric strength	630V:150% Rated Voltage	100V:150% Rated Voltage
	1kV~7.2kV:120% Rated Voltage	630V:150% Rated Voltage
		1kV~7.2kV: 120% Rated Voltage
Aging characteristics	0%	2.5% per decade hr, typical

Appendix High Voltage Type(100V~3000V)

COG-Temperature Compensation Type

High voltage type

Туре						COG																										
Size(inch)	1608	(0603)	2012	(0805)		32	16(12	06)			322	25(12	210)			4	4520(1808	3)			4	4532(1812	2)		7066(3026)	9	9595	(3838	3)
Volt(V)	100	250	100	250	100	250	630	1000	2000	100	250	630	1000	2000	100	250	630	1000	2000	3000	100	250	630	1000	2000	3000	3000	4000	3000	4000	5000	7000
Cap.																																
4.7pF(4R7)																																
5pF (050)																																
7pF (070)																																
8pF (080)																																
9pF (090)																																
10pF(100)																																
12pF(120)																																
15pF(150)																																
18pF(180)																																
22pF(220)																																
47pF(470)																																
56pF (560)																																
68pF (680)																																
82pF (820)																																
100pF(101)																																
180pF(180)																																
220pF(221)																																
330pF(331)																																
470pF(471)																																
560pF(561)																																
680pF(681)																																
1000pF(102)																																
1500pF(152)																																
2200pF(222)																																
2700pF(272)																																
3300pF(332)																																
4700pF(472)																																
5600pF (562)																																
6800pF(682)																																
10000pF(103)																																
15000pF(153)																																
22000pF(223)																																
33000pF(333)																																

X7R-High Dielectric Type

High voltage type

Туре	X7R																									
Size(inch)	1608	(0603)	2012	(0805)		32	16(12	06)			32	25(12	10)				4520	(1808)					4532	(1812)		
Volt(V)	100	250	100	250	100	250	620	1000	2000	100	250	620	1000	2000	100	250	420	1000	2000	2000	100	250	620	1000	2000	2000
Cap.	100	230	100	230	100	230	030	1000	2000	100	230	030	1000	2000	100	230	030	1000	2000	3000	100	230	030	1000	2000	3000
220pF(221)																										
330pF(331)																										
470pF(471)																										
680pF(681)																										
1000pF(102)																										
1500pF(152)																										
2200pF(222)																										
3300pF(332)																										
4700pF(472)																										
5600pF(562)																										
6800pF(682)																										
10000pF(103)																										
15000pF(153)																										
18000pF(183)																										
22000pF(223)																										
33000pF(333)																										
47000pF(473)																										
68000pF(683)																										
0.1µF(104)																										
0.15µF(154)																										
0.22µF (224)																										
0.33µF (334)																										
0.47µF (474)																										
0.68µF (684)																										
1.0nF(105)																										
2.2nF(225)																										

Size	Vr(V)	100pF	470pF	1.0nF	2.2nF	10nF	47nF	100nF	150nF
700/	3,000								
3026	4,000								
	3,000								
7878	4,000								
5050	5,000								
	7,000								

Application(Typical circuit)

DC-DC Converter

High stable operating for Tr(Q1) switching

C2:X7R;250V 10nF~47nF C3:COG;630V 47pF~100pF

Switching Power Supply

C3 : COG, X7R ; 2kV 100pF~1000pF C4 : COG, X7R ; 2kV 100pF~1000pF

Primary circuit and Snubber switching power supply

LCD back light Inverter

MLCC Applications for DC-DC Converter Modules

High voltage MLCCs are mainly used to DC-DC converter modules for industrial applications which have high input voltage of typical 48V. These are used as functions of high frequency noise filtering(decoupling) of power line and snubber capacitor to protect switching device from unsafe transients by inductance of transformer or connection line due to switching operation. For these applications, MLCCs have merits for high allowable ripple current and high reliability.

Figure 2 shows isolated DC-DC converter circuit diagram and MLCC applications such as decoupling and snubber. Input voltage is 36~75V_{DC}(typical 48V_{DC}) for general industrial applications such as base station, server and network equipments. Decoupling MLCCs are applied to input and output(based on viewpoint of switch or transformer) power line to reduce ripple voltage, and MLCCs for snubber application used to absorb surge energy. SAMWHA MLCCs are recommended for each application as shown in Table 1.

Table 1. MLCC recommendation for isolated type DC-DC converter module

Items	MLCC Recommendation
*Input (C1, C2)	1210 X7R 470nF 100V 1812 X7R 1.0uF 100V
Snubber (C3~C6)	Available wide range of products 250V ~2kV (Available up to 7.2 kV) 100pF~2.2nF(Available up to 470nF)
Output (C7)	(High Capacitance Application) 1210 X5R 100uF 6.3V 1206 X5R 47uF 6.3V 0805 X5R 47uF 6.3V

*Typical input voltage of 48V for industrial application

MLCC Applications for Ballast Circuits

High voltage MLCCs are suitable for the ballast circuit as a function of resonant capacitor as presented in Figure 3. MLCCs with high voltage rating from 1kV to 3kV(available up to 7.2kV) are mainly used for these application. SAMWHA offers wide range of capacitance and rated voltage with high reliability.

Caution(Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p Value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DV Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	V0-p		Vp-p	Vp-p	Vp-p

2. Test condition for AC withstanding Voltage

(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave. If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

(2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied

directly to the capacitor without raising it from near zero, it should be applied with the ***zero cross.** At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the ^{0V} capacitor without raising it from near zero, surge voltage may occur and cause a defect. ***ZERO CROSS** is the point where voltage sine wave

(3) Dielectric strength testing method

In case of dielectric strength test, the capacitor's is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.

3. Soldering

If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, follow our recommendations below for adequate soldering conditions. Carefully perform preheating

so that temperature difference(ΔT) between the solder and component surface is in the following range. The smaller the temperatures difference(ΔT) between the solder and component surface is, the smaller the influence on the chip is.

Chip Size	3.2×1.6mm	3.2×2.5mm
Slodering Method	and under	and over
Reflow Method or Soldering Lron Method	⊿ T ≦ 190° C	⊿⊺≦ 130°C

SAMWHA CAPACITOR CO., LTD offers a line of MLCC(Multilayer Ceramic Capacitor). These parts are rated at 3kV dc and safety approved and certified to UL (Underwriters Laboratories Inc. (R))

	OCD Home Quick Guide	Contact Us UL.com
Information Technology Equ	NWGQ8.E304146 uipment Including Electrical Business Equipment Certific	ed for Canada - Component
		Page Bottom
Information Technology Equ	uipment Including Electrical Business Equipment Certific	ed for Canada - Component
See General Information for Info Component	ormation Technology Equipment Including Electrical Business Eq	uipment Certified for Canada -
SAMWHA CAPACITOR CO LTD		E304146
124 BUK-RI		
NAMSA-MYEUN		
YONGIN-SHI, KYONGGI-DO 449-	880 REPUBLIC OF KOREA	
Component Recognition, Mode	el(s) CS45XXYYYTTTA302NRE.	
Marking: Company name, model	designation and Recognized Component Mark for Canada,	<i>1</i> /R
		Last Updated on 2006-04-28
Questions?	Notice of Disclaimer	Page Top
	Copyright @ 2004	5 Underwriters Laboratories Inc.
The appearance of a company's manufactured under UL's Follow- covered under UL's Follow-Up Se	name or product in this database does not in itself assure that p Up Service. Only those products bearing the UL Mark should be rvice. Always look for the Mark on the product.	roducts so identified have been considered to be Listed and
JL permits the reproduction of th The Guide Information, Designs of without any manipulation of the d	e material contained in the Online Certification Directory subjec and/or Listings (files) must be presented in their entirety and in lata (or drawings). 2. The statement "Reprinted from the Online	t to the following conditions: 1. a non-misleading manner, Certifications Directory with

Reliability and Test Conditions(General Type)

				Chara	cteristi	c				Test Methods				
No.	lte	m	Temperature Compensating Type	ŀ	ligh Di	electri	c Cons	tant Ty	/pe	and	Condition	s 15		
1	Operating Temperatur	e Range	C0G :55 to +125℃	X7R Y5V	: –55 to : –30 to	+125℃ +85℃) X5R :	–55 to	+85℃					
2	Insulation Re	esistance	More than 10,000MΩ o	or 500⊊	2F (Whic	hever:	is small	er)		- Applied the minutes of - The charge less than 50	e rated vol charging. e/discharge ImA.	tage for 2		
3	Dielectric St	rength	No defects or abnorm	alities	 C0G: The rated voltage × 300% X7R, X5R, Y5V: × ×250% Applied between the terminations for 1 to 5 seconds. The charge/discharge current is less than 50mA. 									
4	Capacitance	9	Within the specified to	lerance	e									
5	Dissipation	Factor	30pF Min.:	Char. X7R	50V Min. ≤2.5%/	25∨ ≤3%/	16V ≤3.5%/	10∨ ≤5%/	6.3V ≤5%/	The capacita measured at and voltage	The capacitance/Q/D.F measured at 25°C at the			
			30pF Max.:	X5R	*≤5% <5%/	*≤7% <7%/	*≤7% <9%	*≤10% <12.5%/	*≤10%	Сар.	Testing Frequency	Testing Voltage		
			Q≥400+20C (DF≤1/(400+20C))	Y5V	*≤9%	<u>-</u> :,,,, *≤9%	*≤12.5%	*≤15%	≤15%	C0G (C≤1000pF)	1±0.1MHz	0.5 to 5Vrms		
				 You can check the specification at the appendix for each product with mark 					on at Ict	C0G (C >1000pF)	1±0.1kHz	1±0.2Vrms		
										X7R, X5R, Y5V (C≤10µF 6.3V Min.)	1±0.1kHz	1±0.2Vrms		
										X7R, X5R, Y5V (C ≥10µF)	120 ± 24 Hz	0.5±0.1Vrms		
6	Solderabilit Termination	y of	Termination should be 75% of new solder	cover	red with	more	than			- Pb-Free Typ Solder : 96.5 Solder Tem Immersion T - Pre-Heating at 80~120°C	be 55n-3Ag-0.5 perature : 2 fime : 3±0. for 10~30se	5Cu 260±5℃ 1sec		
7	Resistance	Appearance	No marked defect							- Preheat the c	apacitor at	120 to 150°C		
	to Soldering Heat	Capacitchange	Within $\pm 2.5\%$ or $\pm 0.25pF$ (whichever is larger)	X7R, Y5V	×5R : ≤ ≥ : ≤	±7.59 ±20%	%			for 1 minute. 4520, 4532 S Step2 : 170°C	(Preheating tep1:100°C to 200°C, 1n	tor 3225, to 120°C, 1min nin) Immerse the		
		Dissipation Factor (or Q)	30_{pF} Min. : Q \geq 1,000(DF \leq 0.1%) 30_{pF} Max. : Q \geq 400+20C (DF \leq 1/(400+20C))	Char. X7R X5R Y5V	50V Min. ≤2.5%/ ∗≤5%/ ∗≤9%	25V ≤3%/ *≤7% ≤7%/ *≤9%	16∨ ≤3.5%/ ∗≤7% ≤9% ∗≤125%	10V ≤5%/ *≤10% ≤12.5%/ *≤15%	6.3∨ ≤5%/ ∗≤10% ≤15%	 capacitor in a Soldering Te Immersion Ti Initial measure Perform a her for one hour hours at roor Perform the i Measurement Take it out ar 	a eutectic sc mp. : $260 \pm$ ime : 10 ± 0.5 rement wat treatment and then leid in temperatur ntial measur nt after test a set it for 2	bicker solution 5° C sec t at 150+0, -10°C t sit for 48±4 ure. rement. 4±2 hours ting tures		
		I.R.	More than 10,000 MQ or 500 Q. F (Whichever is smaller) or 48 ± 4 hours (high dielet type) then measure								lectric constant			

SMD Type

				Characteristic							Tool	Math	e de					
No.	lte	m	Temperature Compensating Type	ł	ligh Di	ielectri	c Cons	tant Ty	vpe		and	Condit	ions					
8	Temperature Cycle	Appearance	No marking defects	VZD		A /:+ - :	- 7 5 0/			Perform the five cycless according to the four heat treatments listed in the following table.								
		Capacitance Change	(whichever is larger) Y5V : Within $\pm 2.5\%$							Step	1	2	3	4				
		Dissipation Factor	30pF Min. : Q≥1,000 (DF≤0.1%)	Char.	50V Min.	25V	16V	10V	6.3V	Temp. (°C)	Min. Operating Temp.	Room Temp.	Max. Operating Temp. +3 =0	Room Temp.				
		(or Q)	30pF Max.:	X/R X5R	≤5%/ ∗≤7.5%	≤5%/ ∗≤10%	≤5%/ ∗≤10%	≤7.5%/ ∗≤12.5%	≤7.5%/ ∗≤12.5%	Time (Min)	30±3	2 to 3	30±3	2 to 3				
			(DF≤1/(400+20C))	$(-20\%) \qquad \qquad$						 Initial measurement Perform a heat treatment at 150+0, -10°C for one hour and then let sit for 48±4 hours at room temperatur Measurement after test Take it out and set it for 24±2 hours (temperature compensating) or 				150+0, let sit perature ? hours) or				
		I.R.	More than 10,000M Ω o	r 500 Ω	?.F(Whi	chever	is smal	ler)		48± type mea	4 hours(h e) at roon asure.	nigh die n temp	electric co erature, t	for 24±2 hours ensating) or lectric constant erature, then				
9	Humidity	Appearance	No marking defects							- Temperature : $40\pm2^{\circ}$ C								
	Load	Capacitance Change	Within $\pm 7.5\%$ or $\pm 0.75_{pF}$ (whichever is larger)	X7R, Y5V	, X5R : \ : \ (\	Within $\pm 12.5\%$ - Humidity : $90 \sim 95\%$ Within $\pm 30\%$, -40% - Hour : 500 ± 12 hrs(Y5V/1.0 μ F, 2.2μ F, 4.7μ F/10V)- Test Voltage : The rated voltageWithin $\pm 30\%$ (others)- Take it out and set it for 24 ± 2 hour(tomporature componenting) or						age 2 hours						
		Dissipation	30pF Min.:	Char. 50V Min. 25V 16V 10V 6.3V						48±-	4 hours(h	igh die	electric co	onstant				
		Factor (or Q)	Q≥200 (DF≤0.5%) 30pF Max.:	X7R X5R	≤5%/ ∗≤7.5%	≤5%/ ∗≤10%	≤5%/ ∗≤10%	≤7.5%/ ∗≤12.5%	≤7.5%/ ∗≤12.5%	type mea The	type) at room temperature, the measure. The charge/discharge current is							
			Q≥100 +10/3C (DF≤1/(100+10/3C))	Y5V	≤7.5%/ ∗≤12.5%	≤10%/ ∗≤12.5%	≤12.5% ∗≤15%	≤15%/ ∗≤20%	≤20%	less than 50mA								
		I.R.	More than 500MQ or 25Q. F(Whichever is smaller)															
10	High	Appearance	No marking defects							- Tes	ting time	: 1000±	12hrs					
IU	Temperature Load	Capacitance Change	Within ±3% or ±0.3 _p F (whichever is larger)	X7R, Y5V	, X5R : \ : \ \ (Vithin : Vithin : Vithin + Cap. ≥	±12.5% ±30%(C -30%, – ± 1.0μF)	Cap. < 1 40%	.0µF)	- Ap Rat - Ten C00	olied vol ted volta nperature G, X7R → R V5V –	tage : ge < D e : • 125±3 → 85+3	C250V:>	<200%				
		Dissipation Factor (or Q)	$\begin{array}{l} 30 \mbox{pF} \mbox{ Min.:} \\ Q \ge 350 \mbox{ (DF \le 0.3\%)} \\ 10 \mbox{pF} \le \mbox{Cp} \le 30 \mbox{pF}: \\ Q \ge 275 + 5/2C \\ \mbox{ (DF \le 1/(275 + 5/2C))} \\ 10 \mbox{pF} \mbox{ Max.:} \\ Q \ge 200 + 10C \\ \mbox{ (DF \le 1/(200 + 10C))} \end{array}$	Char. X7R X5R Y5V	50V Min. ≤5%/ *≤7.5% ≤7.5%/ *≤12.5%	25∨ ≤5%/ *≤10%/ *≤125%	16V ≤5%/ *≤10% ≤12.5% *≤15%	10V ≤7.5%/ *≤12.5% ≤15%/ *≤20%	6.3V ≤7.5%/ *≤12.5% ≤20%	- Me Tak hoi typ cor the les	asureme e it out a urs(temp e)or 48± nstant type n measu e charge, s than 50	ent after nd set i erature 4 hours e) at ro re. /discha)mA.	r test it for 24± e comper om tempor arge curre	2 nsating electric erature, ent is				
		I.R.	More than 10,000 M Ω of	or 50Ω	F(Whi	chever	& Sma	ler)										

SMD Type

						Charact	teristic				Test Methods		
No.	Ite	m	T Com	empei pensa	rature ting Type	Hig	h Dielect	ric Consta	nt Type	and Conditions			
14	Capacitance Temperature	Capacitance Change				Char.	Temp. Range	Reference Temp.	Cap. Change	(1) Temp The 1	erature Compensating Type: temperature coefficient is		
	Characteristics					X7R	–55 to +125℃		Within ±15%	deter meas	rmined using the capacitance sured in step 3 as a reference,		
						X5R	–55 to +85℃	25℃	Within ±15%	seque	sequentially from step 1 through (C0G: +25 to 125℃) the capacitand shall be with in the specifie tolerance for the temperatur		
						Y5V	−30 to +85℃		Within 22% -82%	shall tolera			
										The capacitance drift is calculate by dividing the difference between the maximum measure values in the step 1, 3 and 5 by th Cap. value in step 3			
		Temperature	Char.	Temp.	Temperature					Step	Temperature(°C)		
		Coefficient		Range	Coefficient					1	25±2		
			COG	-55 to	±30ppm/℃					2	-55 <u>+</u> 3		
				+125 (3	25±2		
										4	125±3(for C0G)		
										5	25±2		
										(2) High The ra chang value range be in	Dielectric Constant Type : anges of capacitance ge compared with the 25°C over the temperature e shown in the table shall the specified range.		
15	Preservation(keeping)			erability is ided to be	considered, capacitors are used in 12 months				(1) Temperature : $25^{\circ} \pm 10^{\circ}$ (2) Relative Humidity : Below 70% RH				
16	The regulate environme pollution m	tion of ntal naterials.	×Nev Pb, asbe	er use Cd, Hg estos.	materials m ∣, Cr⁺ ⁶ , PBB(nentione polybro	ed below ominated b	in MLCC pi piphenyl), l	roducts reg PBDE(polyt	julated this prominated	document. d diphenyl ethers),		

- In case of high Voltage and thin layer type Capacitor, it can be different from nomal specification. So Please ask to our sales person.

SMD Type - High Frequency Capacitors

SAMWHA high frequency MLCC(CF) products offers excellent performance in demanding high RF power applications requiring consistent and reliable operation . The copper electrodes allow for Ultra -low ESR and high Q in the GHz frequencies.

The CF series products are your best choice for high RF power applications from UHF through microwave frequencies.

Applications

- RF Power Amplifiers, Low Noise Amplifiers
- Filter Networks
- Cable TV and telecommunication networks
- GPS, Bluetooth and TV set-top boxes
- MRI Systems

Features

- Ultra Low ESR
- High Q
- High Self Resonance
- Capacitance Range : 0.5pF to 100pF
- Temperature characteristics : C0G

How to Order(Product Identification)

CF : High Frequency(SMD)

2 Size Code

This is expressed in tens of a millimeter.

The first two digits are the length, The last two digits are width.

3 Temperature Coefficient Code

Classification	Code	Temperature Range	Capacitance ToleranceClass
Class	COG	–55 to +125℃	±30 ppm/℃

4 Capacitance Code(Pico farads)

The nominal capacitance value in pF is expressed by three digit numbers.

The first two digits represents significant figures and the last digit denotes the number of zero

Ex.) 104 = 100000pF

R denotes decimal 8R2 = 8.2pF

5 Capacitance Tolerance Code

Code	Tolerance	Code	Tolerance
В	±0.1pF	G	±2.0%
С	±0.25pF	J	\pm 5%
D	\pm 0.5pF	К	\pm 10%
F	±1.0%	М	±2.0%

6 Voltage Code

Code	250	500	101	201	251
Rated	DC	DC	DC	DC	DC
Voltage	25V	50V	100V	200V	250V

7 Termination Code

N : Nickel-Tin Plate

8 Packing Code

R : Reel Type, B : Bulk Type

Strickness Option

Thickne	ess(mm)	Cada	Thickne	Thickness(mm)			
t	Tol(±)	Code	t	Tol(±)	Coue		
0.50	0.05	Blank	1.25	0.15	E		
0.60	0.10	А	1.30	0.20	E		
0.80	0.10	В	1.35	0.20	Н		
0.85	0.15	В	1.60	0.20	I		
1.00	0.15	E	1.80	0.20	J		
1.10	0.15	E	2.00	0.25	К		
1.15	0.15	E	2.50	0.25	L		

Appendix |

COG-Temperature Compensating Type(0603~2012)

0.01 L

Туре	COG						
Size(inch)	1005	(0402)	1608((0603)	2012((0805)	
Volt(V)	25	50	50	100	50	100	
Cap.	ZJ	50	50	100	50	100	
0.5pF(0R5)							
1pF (010)							
2pF (020)							
3pF (030)							
4pF (040)							
5pF (050)							
6pF (060)							
7pF (070)							
8pF(080)							
9pF(090)							
10pF(100)							
12pF(120)							
15pF(150)							
18pF(180)							
22pF(220)							
27pF(270)							
33pF(330)							
39pF(390)							
47 pF(470)							
56pF(560)							
68pF(680)							
82pF(820)							
100pF(101)							

1000

Frequency(MHz)

10000

Automotive Applications

Features

- SAMWHA Series meet AEC-Q200 requirements
- SAMWHA Series Certify ISO/TS 16949 and ISO 14001
- SAMWHA Series are RoHS Compliant

Applications

Automotive electronic equipment

How to Order(Product Identification)

1 Monolithic Multilayer Ceramic Capacitor Leadless Type for Automotive Application

2 Size Code

This is expressed in tens of a millimeter.

The first two digits are the length, The last two digits are width.

S Temperature Coefficient Code

Classification	Code	Temperature Range	Capacitance ToleranceClass
Class	COG	–55 to +125℃	±30 ppm/℃
Class	X7R	–55 to +125℃	±15%

4 Capacitance Code(Pico farads)

The nominal capacitance value in pF is expressed by three digit numbers.

The first two digits represents significant figures and the last digit denotes the number of zero

Ex.) 104 = 100000pF

R denotes decimal 8R2 = 8.2pF

5 Capacitance Tolerance Code

Code	Tolerance	Code	Tolerance
В	\pm 0.1pF	G	\pm 2.0%
С	±0.25pF	J	\pm 5%
D	\pm 0.5pF	K	±10%
F	±1.0%	М	$\pm 2.0\%$

6 Voltage Code

Code	6R3	100	160	250	500	101	201	251	501	631	102	202	302
Rated	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC
Voltage	6.3V	10V	16V	25V	50V	100V	200V	250V	500V	630V	1KV	2KV	3KV

7 Termination & Design Code

N : Nickel-Tin Plate A : Nickel-Tin Plate (Soft Termination) O : Open Mode F : Floating electrode

a. Normal type

b. Open mode

c. Floating electrode

8 Packing Code

R: Reel Type, B: Bulk Type

Strickness Option

Thickne	ss(mm)	Code	Thickne	ess(mm)	Code	
t	Tol(±)	Code	t	Tol(±)	Coue	
0.50	0.05	Blank	1.25	0.15	E	
0.60	0.10	А	1.30	0.20	E	
0.80	0.10	В	1.35	0.20	Н	
0.85	0.15	В	1.60	0.20	I	
1.00	0.15	E	1.80	0.20	J	
1.10	0.15	E	2.00	0.25	К	
1.15	0.15	E	2.50	0.25	L	

Temperature Characteristics See Page 35 (No.21)

Dimensions

			Dimensions						
Code	Le	ngth	Wi	T1(min)					
	L	Tol(±)	W	Tol(±)					
1005(0402)	1.00	0.05	0.50	0.05	0.05				
1608(0603)	1.60	0.15	0.80	0.10	0.10				
2012(0805)	2.00	0.20	1.25	0.15	0.10				
3216(1206)	3.20	0.30	1.60	0.20	0.15				
3225(1210)	3.20	0.40	2.50	0.25	0.15				

Construction of Termination

Specifications and Test Methods(For Automotive Applications)

No	AEC	0200	Specific	ation	Test Methods and Conditions				
INO.	AEC	·Q200	Class	Class	Test Methods and Conditions				
1.	Pre-and Post-S Electrical Test	itress							
2.	High	Appearance	No marking defects		Temperature : 150 ±3 °C				
	Temperature	Capacitance	Within $\pm 2.5\%$ or $\pm 0.25pF$	Within±10.0%	Maintenance Time : 1000+48/-0 hrs				
	Exposure	Change	(Whichever is larger)		Let sit for 24 ± 2 hours at room temperature,				
	(Storage)	Q/D.F.	30pF Min.: Q≥1000	Rated Voltage	then measure.				
			30pF Max.: Q≥400+20×C	16V Min.: 0.05 Max.					
			C: Nominal Capacitance(pF)	10V: 0.075 Max.					
		I.R.	More than 10,000MQ or 500G	₽·F(Whichever is smaller)					

			Specific	ation	
No.	AEC	-Q200	Class	Class	Test Methods and Conditions
3.	Temperature Cycle	Appearance Capacitance Change	No marking defects Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	Within±10.0%	Perform the 1000 cycles according to the four heat treatments listed in the following table. Let sit for 24 ± 2 hours at room temperature, then measure
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 16V Min.: 0.05 Max. 10V: 0.075 Max.	Step 1 2 3 4 Temp.(°C) -55+0/-3 25±2 125+3/-0 25±2 Time(min) 15±3 1 15±3 1
		I.R.	More than 10,000M Ω or 500 ζ	₽·F(Whichever is smaller)	Initial measurement Perform the initial measurement according to Note 1 for Class II.
4.	Destructive Ph	ysical Analysis	No defects or abnormalities		Per EIA-469
5.	Moisture	Appearance	No marking defects		Temperature : 25~65°C, Humidity : 80~98%
	Resistance	Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within±12.5%	Cycle Time : 24 hrs/cycle, 10 cycles
		Q/D.F.	30pF Min.: $Q \ge 350$ 10pF Min. and 30pF Max.: $Q \ge 275+5/2 \times C$ 10pF Max.: $Q \ge 200+10 \times C$ C: Nominal Capacitance(pF)	Rated Voltage 16V Min.: 0.05 Max. 10V: 0.075 Max.	
		I.R.	More than 10,000M Ω or 500 ζ	⊋∙F(Whichever is smaller)	0 1 2 3 4 5 6 7 8 6 1911 (21314 (516 17 18 16 20 22) 22 22 4 → Hours
6.	Biased	Appearance	No marking defects		Temperature : 85±3℃
	Humidity	Capacitance Change	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger)	Within±12.5%	Humidity : 80~85% Applied Voltage : Rated Voltage and 1.3+0.2/-0V Maintananas Time : 1000+48 / 0 bre
		Q/D.F.	30pF Min.: Q≥200 30pF Max.: Q≥100+10/3×C C: Nominal Capacitance(pF)	Rated Voltage 16V Min.: 0.05 Max. 10V: 0.075 Max.	Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than
		I.R.	More than 10,000MQ or 500 ζ	F(Whichever is smaller)	50mA.
7.	Operational	Appearance	No marking defects		Temperature : 125 ± 3 °C
	Life	Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within±12.5%	Applied Voltage : Rated Voltage × 200% Maintenance Time : 1000+48/-0 hrs
		Q/D.F.	30pF Min.: $Q \ge 350$ 10pF Min. and 30pF Max.: $Q \ge 275+5/2 \times C$ 10pF Max.: $Q \ge 200+10 \times C$ C: Nominal Capacitance(pF)	Rated Voltage 16V Min.: 0.05 Max. 10V: 0.075 Max.	 Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. Initial Measurement for Class II Applied 200% of the rated voltage for one hour at 125±3°C Remove and let sit for 24±2 hours at
		I.R.	More than 10,000M Ω or 500 ζ	⊋∙F(Whichever is smaller)	room temperature, then measure.
8.	External Visua	l	No defects or abnormalities		Visual inspection
9.	Physical Dime	nsion	Within the specified dimension	ons	Using calipers
10.	Resistance to Solvents	Appearance Capacitance Change	No marking defects Within the specified tolerance	3	Per MIL-STD-202 Method 215
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	
		I.R.	More than $10,000MQ$ or $500Q$	↓F(Whichever is smaller)	

Ne	AEC	0200	Specific	ation	Test Methods and Conditions						
110.	AEC-		Class	Class	lest methods and conditions						
11.	Mechanical	Appearance	No marking defects		Three shocks in each direction should	d be					
	Shock	Capacitance Change	Within the specified tolerance	<u>}</u>	applied along 3 mutually perpendicular ax the test specimen (18 shocks)	es of					
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	Wave form : Half-sine Duration : 0.5ms Peak value : 1,500G Velocity change : 4.7m/s						
		I.R.	More than 10,000M Ω or 500 ζ	∙F(Whichever is smaller)							
12.	Vibration	Appearance	No defects or abnormalities		The specimens should be subjected	to a					
		Capacitance Change	Within the specified tolerance)	simple harmonic motion having a amplitude of 1.5mm. The entire freque range of 10 to 2 000 Hz and return to 1	total ency					
17 . Davidance da		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	should be traversed in 20 minutes. This cycle should be performed 12 times in each of three mutually perpendicular directions (total of 36 times).						
		I.R.	More than 10,000M Ω or 500 ζ	2∙F(Whichever is smaller)							
13.	Resistance to	Appearance	No marking defects		Temperature(Eutectic solder solution) : $260\pm5\%$						
	Soldering Heat	Capacitance Change	Within the specified tolerance	9	Dipping Time : $10\pm1s$ Let sit for 24 ±2 hours at room tempera	iture,					
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	then measure. Initial measurement Perform the initial measurement accordir Note 1 for Class II.	ng to					
		I.R.	More than 10,000MQ or 500G), F(Whichever is smaller)							
14.	Thermal	Appearance	No marking defects		Perform the 300 cycles according to the	two					
	Shock	Capacitance Change	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger)	Within±12.5%	heat treatments listed in the following table Transfer Time : 20s Max.	thon					
		Q/D.F.	30pF Min.: Q≥1000	Rated Voltage	measure.						
			$30pFMax.: Q \ge 400+20 \times C$	25V: 0.025 Max.	Step 1 2						
			C. Nominal Capacitance(pr)	16V: 0.035 Max.	Temp.(°C) -55+0/-3 125+3/-0 Time(min) 15+3 15+3)					
		I.R.	More than 10,000MΩ or 500ς	10V: 0.05 Max. 2-F(Whichever is smaller)	Initial measurement Perform the initial measurement accordin Note 1 for Class II.	ng to					
15.	ESD	Appearance	No marking defects		Per AEC-Q200-002						
		Capacitance Change	Within the specified tolerance	2							
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.							
		I.R.	More than 10,000MQ or 500G	₽-F(Whichever is smaller)							

			Specific	ation								
No.	AEC	-Q200	Class	Class	Te	est Methods a	ind Condi	tions				
16.	Solderability		95% of the terminations is to k and continuously.	be soldered evenly	immerse the capacitor in a solution of ethanol and rosin. Immerse in eutectic solder solution for 5+0/-0.5 seconds at $235\pm5^{\circ}$. (b) Steam aging for 8 hours, and then immerse the capacitor in a solution of ethanol and rosin. Immerse in eutectic solder solution for 5+0/-0.5 seconds at $235\pm5^{\circ}$. (c) Steam aging for 8 hours, and then immerse the capacitor in a solution of ethanol and rosin. Immerse in eutectic solder solution for 120±5 seconds at $260\pm5^{\circ}$.							
17.	Electrical	Appearance	No defects or abnormalities		The capa	acitance/Q/D.F.	should be i	measured at				
	Characteriza -tion	Capacitance Change	Within the specified tolerance)	25°⊂ at tl table	he frequency an	nd voltage s	shown in the				
			30n F Min · Q >1000	Rated Voltage	Class	Capacitance (C)	Frequency	Voltage				
		Q/D.1.	$30pF$ Max.: Q \geq 400+20×C	50V: 0.025 Max.	Class I	C≤1000pF	1±0.1MHz	0.5~5Vrms				
			C: Nominal Capacitance(pF)	25V: 0.03 Max.	<u> </u>	C>1000pF	1±0.1kHz	1±0.2Vrms				
				16V: 0.035 Max.	Class II	C≤110µF C≤10⊮E	1 ± 0.1 kHz 120 ± 24 Hz	1 ± 0.2 Vrms 0.5+0.1 Vrms				
						C>10μ1						
		I.R. at 25℃	More than 100,000MΩ	More than $100,000MQ$	Should	be measured \ na rated yeltage	with a DC v	voltage not				
			Or 1,000Ω+⊢ (Whichever is smaller)	(Whichever is smaller)	minutes	of charging.						
		I.R. at 125℃	More than 10,000MΩ or 100Ω· F	More than 10,000MΩ or 10Ω·F								
			(Whichever is smaller)	(Whichever is smaller)								
		Dielectric Strength	No dielectric breakdown or n	nechanical breakdown	Applied 250% of the rated voltage for 1~3 seconds							
					The charge/discharge current is less than 50mA.							
18.	Board Flex	Appearance	No marking defects		Apply a	force in the d	lirection sh	nown in the				
		Canacitance	Within +5.0% or +0.5pF	Within +10.0%	following	g figure for 5 ± 1	seconds.					
		Change	(Whichever is larger)	Within _ 10.0 /		t Solder Cl	hip Printed circa	uit board before testing				
					1.5	45±2 45±2						
					Flexure for Class I: ≤3mm for Class II: ≤2mm							
19.	Terminal	Appearance	No marking defects		Apply *18N force in parallel with the test jig f							
	Strength	Capacitance	Within $+5.0\%$ or $+0.5$ pF	Within+10.0%								
		Change	(Whichever is larger)		*10N for 1608(EIA:0603) size							
		-			2N for	1005(EIA:0402) si	ze					

Automotive Applications

Na	AEC	0200		Specific	ation		Tost Mothods and Conditions							
INO.	AEC-	QZUU	Class			Class	Test Methods and Conditions							
20.	Beam Load Te	st	The chip endure fo	llowing for	rce.		Apply a force as shown in the following figure.							
			Chip Length	Thickne	ess (T)	Force	(i) Chip Length : 2.5mm Max.							
			2.5mm Max.	T≤0.5	ōmm	8N	Beam Speed : 0.5mm/s							
				T>0.51 T<1.25	mm imm	20N 15N	Ļ							
			3.2mm Min.	T≥1	.25	54.5N	Iron Board							
						(ii) Chip Length : 3.2mm Min.								
							Beam Speed : 2.5mm/s							
							L							
	_	C 1				450/	(i) Class I							
21.	Capacitance Temperature	Capacitance Change			Within	±15%	(I) Class I The temperature coefficient is determined							
	Characteristics	Temperature	0+30 ppm/℃				using the capacitance measured in step 3 as a							
		Coefficient					reference. When cycling the temperatur							
		Capacitance	Within ±0.2% or ±0).05pF			capacitance should be within the specified							
		Drift	(Whichever is large	er)			tolerance for the temperature coefficient.							
							The capacitance drift is calculated by dividing the differences							
							between the maximum and minimum							
							measured values in steps							
							1, 3 and 5 by the capacitance value in step 5.							
							Step 1 2 3 4 5 Temp.(°) 25±2 -55±3 25±2 125±3 25±2							
							(ii) Class II							
							The ranges of capacitance change compared							
							with the $25{}^\circ_{\mathbb C}$ value over the temperature range from -55 ${}^\circ_{\mathbb C}$ to 125 ${}^\circ_{\mathbb C}$							
							Initial measurement							
							Perform the initial measurement according to Note 1 for Class II.							

*Note 1. Initial Measurement for Class II

Perform a heat treatment at 150+0/-10 $^{\circ}_{
m C}$ for one hour, and then let sit for 24±2 hours at room temperature, then measure.

Packing

Bulk packing

- ① 1000 pcs per Polybag
- ② 5 Polybags per Inner box
- ③ 10 Inner boxes per Out box

Reel Dimensions

Reel Packing

- (1) 8~10 Reels per Inner box
- ② 10 Inner boxes per Out box

• n	Mark	Size Code	EIA Code	Α	В	С	D	E	W
св	7″ REEL	1005~3225	0402~1210	Ø178±2	Ø50Min.	\emptyset 13 \pm 0.5	Ø21±0.8	2±0.5	10±1.5
1.	13" REEL	1005~3225	0402~1210	Ø330±2	Ø70Min.	\emptyset 13 \pm 0.5	Ø21±0.8	2±0.5	10 ± 1.5
t=2±0.5									

Number of Packages

Туре	EIA CODE	7″ Quantity(EA)/Reel	13″ Quantity(EA)/Reel
1005	0402	10,000	50,000
1608	0603	4,000	16,000
2012	0805	3,000 ~ 4,000	10,000
3216	1206	2,000 ~ 4,000	6,000 ~ 10,000
3225	1210	1,000 ~ 3,000	4,000 ~ 10,000

Tape Dimensions

RAWING	DIRECTON

TYPE	EIA CODE	Α	В	С	D	E	F	G	Н	J
1005	0402	1.15 ± 0.1	0.65 ± 0.1	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	2.0 ± 0.05	2.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1
1608	0603	1.9 ± 0.2	1.10 ± 0.2	8.0 ± 0.3	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1
2012	0805	2.4 ± 0.2	1.65 ± 0.2	8.0 ± 0.3	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1
3216	1206	3.6 ± 0.2	2.00 ± 0.2	$8.0 {\pm} 0.3$	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1
3225	1210	3.6 ± 0.2	2.80 ± 0.2	8.0 ± 0.3	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0±0.1	4.0±0.1	1.5 ± 0.1

BLANK	CHIPS	BLANK	LEADER
10 to 20pitch		20 to 40 pitch	200 to 250mm
	$\Phi \Phi \phi (\Phi \Phi \Phi$		
	▋ ▇		
	DRAWING DIRECTION		

Capacitance Table.

Class I (C0G)

Size Code (EIA Code)		1005	(0402)			1608((0603)		2012(0805)			3216(1206)				3225(1210)				
Volt(V)				100		05		100		0.5		100		05		100		05		100
Cap.	16	25	50	100	10	25	50	100	10	25	50	100	10	25	50	100	10	25	50	100
0.5 pF																				
1pF																				
2.2 pF																				
4.7 pF																				
6.8pF																				
10pF																				
22 pF																				
47 pF																				
68 pF																				
100 pF																				
220 pF																				
470 pF																				
680pF																				
1nF																				
1.8nF																				
2.2 nF																				
3.3 _n F																				
4.7 nF																				

Class II (X7R)

Size Code (EIA Code)		1005	(0402)		1608(0603)				2012(0805)			3216(1206)				3225(1210)				
Volt(V)	16	25	50	100	16	25	50	100	16	25	50	100	16	25	50	100	16	25	50	100
Cap.		25	50	100	10	25	50	100	10	25	30	100	10	25	50	100	10	25	30	100
1nF																				
2.2 nF																				
4.7 nF																				
6.8 nF																				
10 nF																				
22nF																				
47 nF																				
68nF																				
100 nF																				
220nF																				
470 nF																				
680 nF																				
1uF																				
2.2uF																				
4.7uF																				
10uF																				
22uF																				
47uF																				

Caution

Storage Condition

When solderability is considered, capacitor are recommended to be used in 12 months.

(1) Temperature: $25^{\circ}_{\circ} \pm 10^{\circ}_{\circ}$

(2) Relative Humidity: Below 70% RH

The Regulation of Environmental Pollution Materials

Never use materials mentioned below in MLCC products regulated this document. Pb, Cd, Hg, Cr⁺⁶, PBB(Polybrominated biphenyl), PBDE(Polybrominated diphenyl ethers), asbestos

Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

(Component direction)

Locate chip horizontal to the direction in which stress acts

Chip arrangement Worst A-C-(B. D) Best

Reflow Soldering

- 1. The sudden temperature change easily causes mechanical damages to ceramic components. Therefore, the preheating procedures should be required for the soldering of ceramic components.
- 2. Please refer to the recommended soldering profiles as shown in figures, and keep the temperature difference($\triangle T$) within the range recommended in Table 1.

Temperature 250±10°C 200°C Gradua ΔT Cooling 160±10°C 140±10°C Preheating Time 60~120 sec 30~60 sec.

Table 1.

Size code (EIA Code)	Temperature Difference
1005~3216 (0402~1206)	∆T≤190℃
3225 (1210)	∆T≤130℃

Infrared Reflow

▶ 'Aging'/'De-aging' behavior of high dielectric constant type MLCCs

(Typically represented by X7R temperature characteristic of which main composition is BaTiO3)

'Aging' / 'De-aging' Behavior of high dielectric MLCCs Please note that high dielectric type dielectric ceramic capacitors have a "normal" 'aging' behavior / characteristic, that is; their capacitance value decreases with time from its value when it was first manufactured. From that date, the capacitance value begins to decrease at a logarithmic rate defined by:

$$C_t = C_{48}(1 - k \log 10 t)$$

- Ct: Capacitance value, t hours after the start of 'aging'
- C48: Capacitance value, 48 hours after its manufacture
- k : Aging constant (capacitance decrease per decade-hour)
- t : time, in hours, from the start of 'aging'

The capacitance value can be restored (also known as 'de-aged') by exposing the component to elevated temperatures approaching its curie temperature (approximately 120°C). This 'de-aging' can occur during the component's solder-assembly onto the PCB, during life or temperature cycle testing, or by baking at 150°C for about 1 hour.

Dielectric	Maximum percent capacitance loss per decade hour, k
COG	0
X7R	~3%